

# DECODING ENSO MISSION AND HAMRADIO APPLICATION



## **1** INTRODUCTION

This document describes the new satellite of the University Space Center of Montpellier (CSUM): **ENSO** (Expleo Nanosat for Solar-irradiance Observations). It shows the satellite characteristics, its mission and describes how to decode beacons received from the satellites. Also, this document provides information about the RadioHam Application running on board the satellite and how members of the Amateur Radio community can use it.

#### **1.1 The Mission**

ENSO is the result of a collaboration between Expleo France and the Centre Spatial Universitaire de Montpellier. Its main goal is to study Earth's ionosphere by generating and emitting High Frequency (HF) signals able to probe this layer of the atmosphere for environmental research. The mission also aims at taking picture of Earth's surface by means of a compact camera installed on the satellite's payload.

The reception on the ground of the HF beacon by the South African National Space Agency (SANSA) will allow them to better characterize the ionosphere and calibrate the ground equipment used for reception. Other Ground Segments of the SuperDARN newtwork, as well as CPUT's own Ground Segment, may also be used within the project. The mission shall last for one year, extendable to 2 years.

#### **1.2 Launch Information**

The satellite will be launched on board Transporter 9 (SpaceX) at the beginning of November at around 520 km of altitude at a 97 degrees inclination. More information about the launch will be provided soon.

## 2 HAM RADIO APPLICATION

The HF ENSO beacon is an opportunity for the radio amateur community to explore and characterize the propagation channels in the ionosphere (reflection and propagation) on white areas where there is no radiofrequency coverage (oceans, deserts, poles, etc.). And of course, at the same time, to calibrate their own HF ground station.

The HAM RADIO Community will be able to activate the HF beacon upon request to the mission operators. The system in charge of coordinate the different requests will be made available before the launch date. A more detailed document and a set of tools will then be provided to the community one week after the launch, provided the commissioning phase is nominal.



## **3 DECODING**

### **3.1 PHYSICAL LAYER**

| PARAMETER                      | VALUE      |
|--------------------------------|------------|
| HAM RADIO CALLSIGN             | FX6FRC     |
| DOWNLINK FREQUENCY             | 436.5 MHz  |
| UPLINK FREQUENCY               | 435.5 MHz  |
| MAX BANDWIDTH                  | 20 kHz     |
| MODULATION*                    | GMSK       |
| DATARATE (UP/DOWNLINK) *       | 2400 bps   |
| PROTOCOL                       | AX25       |
| BEACON INTERVAL (Default)      | 29 seconds |
| EXPECTED TIME FOR FIRST BEACON | TBD        |

\* The platform allows the change of up and downlink modulation scheme during the mission. The following configuration are also possible. The HAMRadio community will be informed in case the RF link parameters are changed:

- AFSK 1k2 bps – AX25 protocol.

- GMSK 9k6 bps - AX25 protocol.

### **3.2 BEACON PACKET**

The satellite communication systems is based on the AX.25 protocol. The packet structure is shown in the tables below.

#### 3.2.A AX25 PACKET

| AX25 PACKET |        |             |           |                 |         |  |
|-------------|--------|-------------|-----------|-----------------|---------|--|
| PREAMBLE    | FLAG   | AX25_HEADER | AX25_INFO | FCS (CRC)       | FLAG    |  |
| 32 Bytes    | 1 Byte | 16 Bytes    | 142 Bytes | 2 Bytes         | 1 Bytes |  |
| 0x55        | 0x7E   |             |           | CRC-16/<br>X.25 | 0x7E    |  |

#### 3.2.B AX25 HEADER

|                     | AX25 HEADER |          |        |         |        |  |  |  |
|---------------------|-------------|----------|--------|---------|--------|--|--|--|
|                     | ADDRE       | SS       | _      | CONTROL | PID    |  |  |  |
| <b>DESTINATION*</b> | DESTINATI   | SOURCE*  | SOURCE |         |        |  |  |  |
|                     | ON SSID     |          | SSID   |         |        |  |  |  |
| 6 Bytes             | 1 Byte      | 6 Byte   | 1 Byte | 1 Byte  | 1 Byte |  |  |  |
| 0x8C689694B         | 0xE0        | SAT      | 0xE1   | 0x03    | 0xF0   |  |  |  |
| 040                 |             | CALLSIGN |        |         |        |  |  |  |

\* In AX25 protocol, the destination and source callsigns are equal to the equivalent ASCII characters in hex shifted one bit to the left. Ex: F4KJX = 0x8C689694B040



#### 3.2.C AX25 INFO/DATA

|        | AX25 DATA     |                        |             |          |          |          |             |
|--------|---------------|------------------------|-------------|----------|----------|----------|-------------|
| Length | Frame<br>Type | TS                     | OBDH        | EPS      | ттс      | PAYLOAD  | HAM MESSAGE |
| 1 Byte | 1 Byte        | 4 Bytes                | 16<br>Bytes | 32 Bytes | 16 Bytes | 48 Bytes | 24 Bytes    |
| 0xEA   | 0x10          | UNIX<br>Timestam<br>p* |             |          |          |          |             |

\* Sent with LSByte (Less Significant Byte) first. Ref: <u>https://www.unixtimestamp.com/</u>

#### 3.2.C.1 OBDH DATA

| Field             | Description               | Length (bytes) | Value                      |
|-------------------|---------------------------|----------------|----------------------------|
| OBDH Timestamp    | Time at the OBDH system   | 4              | Unix Timestamp, LSB        |
| Temperature       | Last recorded temperature | 2              | Signed Integer, Big Endian |
|                   | by the OBDH               |                | Unit: °C                   |
| Satellite Mode    | Mode of the Satellite     | 1              | 0x00 -> STANDBY            |
|                   |                           |                | 0x01 -> DEPLOY             |
|                   |                           |                | 0x02 -> COMMISSIONNING     |
|                   |                           |                | 0x03 -> COMM_PL            |
|                   |                           |                | 0x04 -> MISSION            |
|                   |                           |                | 0x05 -> LOW_P_MISSION      |
|                   |                           |                | 0x06 -> TRANSMIT           |
|                   |                           |                | 0x07 -> SURVIVAL           |
|                   |                           |                | 0x08 -> SILENT             |
| OBDH Mode         | Mode of the OBDH          | 1              | 0x11 -> STANDBY            |
|                   | subsystem                 |                | 0x22 -> DEPLOY             |
|                   |                           |                | 0x33 -> COMMISSIONNING     |
|                   |                           |                | 0x44 -> COMM_PL            |
|                   |                           |                | 0x55 -> MISSION            |
|                   |                           |                | 0x66 -> LOW_POWER_MISSION  |
|                   |                           |                | 0x77 -> SILENT             |
|                   |                           |                | 0xFF -> POR                |
| Bytes to transmit | Number of data bytes      | 4              | Unsigned Integer           |
|                   | stored in memory to be    |                | Big Endian                 |
|                   | downlinked                |                |                            |
| Number of Resets  | Number of OBDH resets     | 2              | Unsigned Integer           |
|                   |                           |                | Big Endian                 |
| Number of Errors  | Number of errors that     | 2              | Unsigned Integer           |
|                   | occurred in the OBDH      |                | Big Endian                 |

#### 3.2.C.2 EPS DATA

| Field | Description | Length<br>(bytes) | Value |
|-------|-------------|-------------------|-------|
|-------|-------------|-------------------|-------|



|                       | Mada at the EDC is it                                     | 1        |                                   |
|-----------------------|-----------------------------------------------------------|----------|-----------------------------------|
| EPS Mode              | Mode of the EPS subsystem                                 | 1        | 0x00 -> IDLE                      |
|                       |                                                           |          | 0x11 -> SURVIVAL                  |
|                       |                                                           |          | 0x22 -> STANDBY                   |
|                       |                                                           |          | 0x33 -> DEPLOY                    |
|                       |                                                           |          | 0x44 -> COMMISSIONNING            |
|                       |                                                           |          | 0x55 -> MISSION                   |
|                       |                                                           |          | 0x66 -> LOW_POWER_MISSION         |
|                       |                                                           |          | 0x77 -> SILENT                    |
| Battery Voltage       | Last Battery Voltage                                      | 1        | =int( <b>byte</b> )*20            |
|                       |                                                           |          | Unit: mV                          |
| Battery               | Last measured battery                                     | 1        | Signed Int                        |
| Temperature           | temperature                                               |          | Unit: °C                          |
| Min Battery Voltage   | Minimum Battery Voltage                                   | 1        | =int( <b>byte</b> )*20            |
|                       | measured since reboot                                     |          | Unit: mV                          |
| Max Battery Voltage   | Maximum Battery Voltage                                   | 1        | =int( <b>byte</b> )*20            |
|                       | measured since reboot                                     |          | Unit: mV                          |
| Avg Battery Voltage   | Average Battery Voltage                                   | 1        | =int( <b>byte</b> )*20            |
|                       | measured since reboot                                     |          | Unit: mV                          |
| Avg Charge Current    | Average Charge Current                                    | 1        | =int( <b>byte</b> )*12            |
|                       | measured since reboot                                     | -        | Unit: mA                          |
| Max Charge Current    | Maximum Charge Current                                    | 1        | =int( <b>byte</b> )*12            |
| Hux enarge earrene    | measured since reboot                                     | -        | Unit: mA                          |
| Z- Face               | Temperature measured at the                               | 1        | Signed int                        |
| Temperature           | -Z face of the satellite                                  | 1        | Unit: °C                          |
| OBDH Current          | Current consumption of the                                | 1        | Unsigned Int                      |
| Obbit Current         | OBDH                                                      | 1        | Unit: mA                          |
| EPS Current           | Current consumption of the                                | 1        | Unsigned Int                      |
|                       | EPS                                                       | <b>_</b> | Unit: mA                          |
| TTC μC Current        | Current consumption of the                                | 1        | Unsigned Int                      |
| Γις με current        | TTC Microcontroller                                       | <b>1</b> | Unit: mA                          |
| TTC PA Current        |                                                           | 1        |                                   |
|                       | Current consumption of the<br>Power Amplifier of the TTC  | <b>1</b> | =int( <b>byte</b> )*5<br>Unit: mA |
| TTC DA Current MAY    | •                                                         | 1        |                                   |
| TTC PA Current MAX    | MAX Current consumption of the Power Amplifier of the TTC | 1        | =int( <b>byte</b> )*5<br>Unit: mA |
| DAVI OAD Current      | · · · · · · · · · · · · · · · · · · ·                     | 1        |                                   |
| PAYLOAD Current       | Current consumption of the                                | <b>1</b> | =int( <b>byte</b> )<br>Unit: mA   |
| Champa Commant        | Payload                                                   | 1        |                                   |
| Charge Current        | Total charge current of the                               | 1        | =int( <b>byte</b> )               |
| To non-ono-burner Mar | battery                                                   | 1        | Unit: mA                          |
| Temperature X+        | Temperature of the X+ face                                | 1        | Temperature = (signed int8) byte  |
| Temperature X-        | Temperature of the X- face                                | 1        | Temperature = (signed int8) byte  |
| Temperature Y+        | Temperature of the Y+ face                                | 1        | Temperature = (signed int8) byte  |
| Temperature Y-        | Temperature of the Y- face                                | 1        | Temperature = (signed int8) byte  |
| Temperature Z+        | Temperature of the Z+ face                                | 1        | Temperature = (signed int8) byte  |
| OBDH Voltage          | Supply Voltage of the OBDH                                | 1        | Voltage [mV] = (Byte * 10) + 4000 |
| TTC PA Voltage        | Supply Voltage of the Power                               | 1        | Voltage [mV] = (Byte * 10) + 4000 |
|                       | amplifier                                                 |          |                                   |
| Payload Voltage       | Supply Voltage of the Payload                             | 1        | Voltage [mV] = (Byte * 10) + 4000 |
| MOS1 Voltage          | Voltage of the MOSFET 1                                   | 1        | Voltage [mV] = (Byte + 2200) *    |
|                       | (Passivation)                                             |          | 0.805                             |
|                       | 1                                                         | 1        | 1                                 |



| MOS2 Voltage      | Voltage of the MOSFET 2       | 1 | Voltage [mV] = (Byte + 2200) *    |
|-------------------|-------------------------------|---|-----------------------------------|
|                   | (Passivation)                 |   | 0.805                             |
| MOS3 Voltage      | Voltage of the MOSFET 3       | 1 | Voltage [mV] = (Byte + 2200) *    |
|                   | (Passivation)                 |   | 0.805                             |
| Reference Voltage | Passivation Reference Voltage | 2 | Voltage [mV] = (Byte) * 0.805     |
| Temperature 5V    | Temperature of 5V regulator   | 1 | Temperature = (signed int8) byte  |
| REG               |                               |   |                                   |
| Temperature 6V    | Temperature of 6V regulator   | 1 | Temperature = (signed int8) byte  |
| REG               |                               |   |                                   |
| TTC MCU Voltage   | Supply Voltage of the TTC     | 1 | Voltage [mV] = (Byte * 10) + 4000 |
|                   | microcontroller               |   |                                   |

#### 3.2.C.3 TTC DATA

| Field                            | Description                                                 | Length  | Value                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|----------------------------------|-------------------------------------------------------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                  |                                                             | (bytes) |                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| TTC Mode                         | Mode of the TTC<br>subsystem                                | 1       | 0x01 -> IDLE<br>0x11 -> BEACON<br>0x22 -> COMMISSIONNING<br>0x44 -> SILENT                                                                                                                                                                                                                                                                                                                                                                          |
| Number of TTC<br>Resets          | Number of resets of the<br>TTC subsystem                    | 2       | Unsigned Int                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Last reset cause                 | Cause of last TTC reset                                     | 1       | 0x11 -> POR (Power supply reset)<br>0x22 -> WDTTO (Watchdog)<br>0x33 -> OSC (Oscillator Error)<br>0x44 -> HW (Reset Pin)<br>0x55 -> DEBUG (Debugger Reset)<br>0x77 -> RI (Software Reset)                                                                                                                                                                                                                                                           |
| Number of Received valid packets | Number of received<br>packets with valid CRC<br>since reset | 2       | Unsigned Int                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Number of<br>transmitted packets | Number of transmitted<br>packets since reset                | 2       | Unsigned Int                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Measured<br>Transmission Power   | Output RF power<br>measured by TTC                          | 2       | Unsigned Int<br>ADC counts (max: 4048)                                                                                                                                                                                                                                                                                                                                                                                                              |
| Last Error Code                  | Cause of last error in the<br>TTC                           | 1       | 0x00 -> NULL<br>0x11 -> RADIO_HW_ERROR<br>0x22 -> TX_QUEUE_FULL<br>0x33 -> RX_QUEUE_FULL<br>0x44 -> TX_BUS_QUEUE_FULL<br>0x55 -> RX_BUS_QUEUE_FULL<br>0x66 -> OBC_TEMP_HW_ERROR<br>0x77 -> OBC_TEMP_H_LIMIT_ERROR<br>0x88 -> OBC_TEMP_L_LIMIT_ERROR<br>0x99 -> PA_TEMP_HW_ERROR<br>0xAA -> PA_TEMP_HW_ERROR<br>0xAA -> PA_TEMP_H_LIMIT_ERROR<br>0xBB -> PA_TEMP_L_LIMIT_ERROR<br>0xCC -> OBDH_NACK<br>0xDD -> PF_RESET_REQ<br>0xD1 -> TTC_RESET_REQ |



|                                                   |                                                                  |   | 0xEE -> RADIO_TASK_TIMEOUT<br>0xFF -> RADIO_UNQUEUE<br>0x01 -> OBDH_STATUS_REQ<br>0x02 -> OBDH_BDR_REQ<br>0xA1 -> FRAM_ID_ERROR<br>0xA2 -> FRAM_HW_ERROR<br>0xA3 -> FRAM_READ_ERROR<br>0xA4 -> FRAM_WRITE_ERROR<br>0xA5 -><br>EVENT_QUEUE_READ_ERROR |
|---------------------------------------------------|------------------------------------------------------------------|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Power Configuration                               | Output Power<br>Configuration                                    | 1 | Unsigned Int<br>Max = 120                                                                                                                                                                                                                            |
| Power Amplifier<br>Temperature                    | Last Measured<br>temperature of the Power<br>Amplifier           | 1 | Signed Int<br>Unit: °C                                                                                                                                                                                                                               |
| RSSI of last received packet                      | Received Signal Strength<br>Indicator of last received<br>packet | 1 | -1 * Int(byte)<br>Unit: dBm                                                                                                                                                                                                                          |
| Frequency Deviation<br>of last received<br>packet | Frequency Deviation of<br>last received packet with<br>valid CRC | 1 | 17 * SignedInt(byte)<br>Unit: Hz                                                                                                                                                                                                                     |
| Beacon period                                     | Time interval between beacon transmissions                       | 1 | Int(byte)<br>Unit: seconds                                                                                                                                                                                                                           |

#### 3.2.C.4 MESSAGE

| Field   | Length (bytes) | Value           |
|---------|----------------|-----------------|
| Message | 24             | ASCII Character |

### **3.3 TOOLS FOR RECEIVING AND DECODING BEACONS**

#### 3.3.A CSUM GITHUB PAGE

CSUM's <u>Github page</u> provides a set of tools to decode signals from the satellites and send the packets directly to CSUM servers. More information can be found in the <u>documentation page</u> of the GitHub repository.

#### 3.3.B CSUM DATA DIFFUSION PLATFORM

CSUM's Data Diffusion Platform (DDP) provide users direct access to radio packet decoded from our satellites. Amateur Radio members who push packets to CSUM's servers can see their packets decoded in real-time by accessing the DDP Public Page of ENSO (available soon). In case you want to build your own decoder and send packets to CSUM's server, you can use the information below:

| Parameter                | Value                                                |
|--------------------------|------------------------------------------------------|
| Protocol                 | Simple Downlink Share Convention (SiDS)              |
| Endpoint                 | https://ddp.csum.umontpellier.fr/store_beacon        |
| Method                   | HTTP POST                                            |
| Data Structure (Minimum) | source: HAM Callsign of the receiving station        |
|                          | frame: AX.25 received frame in hex (no Flag, no CRC) |
|                          |                                                      |



|  | Example:<br>{<br>'source': 'F4KJX ',<br>'frame':<br>'8c689694b040e08cb06c8ca482e103f0ea10c7524a5c71524a5cb501023378b002<br>004200af0044b355a8bbb30000810e083c1f0000002210001100000800ef0e00642<br>200001d5104ff078000800040000504ff07e000c0001e000000000000000000<br>000000000000000 |
|--|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|  | 004200af0044b355a8bbb30000810e083c1f0000002210001100000800ef0e00642<br>200001d5104ff078000800040000504ff07e000c0001e0000000000000000000000000000                                                                                                                                     |
|  | 00000000000000000000000000000000000000                                                                                                                                                                                                                                               |
|  | <pre>}</pre>                                                                                                                                                                                                                                                                         |

## **4 CONTACT INFORMATION**

In case you have questions about the information in this document or related to this mission in general, do not hesitate to contact us through the following email address:

csum-radioham-contact@umontpellier.fr

Good luck to all!

73's